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ABSTRACT

As a part of an ongoing NASA/industry rotorcraft structural dynamics

program, a study was recently initiated at Langley on optimization of

rotorcraft structures for vibration reduction. The objective of this

study is to develop practical computational procedures for structural

optimization of airframes subject to steady-state vibration response

constraints. One of the key elements of any such computational proce-

dure is design sensitivity analysis. A method for design sensitivity

analysis of airframes under vibration response constraints is pre-

sented. The mathematical formulation of the method and its implemen-

tation as a new solution sequence in MSC/NASTRAN are described. The

results of the application of the method to a simple finite element

'stick' model of the AH-1G helicopter airframe are presented and

discussed. Selection of design variables that are most likely to bring

about changes in the response at specified locations in the airframe is

based on consideration of forced response strain energy. Sensitivity

coefficients are determined for the selected design variable set.

Constraints on the natural frequencies are also included in addition

to the constraints on the steady-state response. Sensitivity coeffi-

cients for these constraints are determined. Results of the analysis

and insights gained in applying the method to the airframe model are
discussed. The general nature of future work to be conducted is
described.
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INTRODUCTION

Excessive vibrations have a detrimental influence on the

performance, operation and maintenance of helicopters. The primary

source of vibration in the airframe arises from the vibratory airloads

acting on the main rotor which are transmitted to the airframe at known

discrete frequencies. Vibration continues to be a problem in

helicopters despite considerable efforts to reduce it. The problem has
been attacked by the use of active and passive vibration control

devices, by changes to main rotor system and by airframe design. Use
of vibration control devices involves weight penalties. Alterations to

the rotor by modifying blade stiffness and mass distribution are being

studied. Airframes are designed to satisfy strength, vibration and

performance requirements. Dsign for vibrations is based primarily on
previous experience. Selection of the best airframe that meets all the

requirements, in particular the vibration requirements, is a difficult

task. It would appear that structural optimization tools, properly

brought to bear by the design engineer, would go a long way toward

achieving the goal of an analysis capability for designing a low
vibration helicopter.

The use of structural optimization in helicopter airframe design

for vibration reduction is a relatively new research topic and has

only recently been addressed. Work related to "optimization" of

helicopter airframe structures is contained primarily in references

1-6. However, only references 5 and 6 use a nonlinear programming

approach. Sciarra (1) used a strain energy approach to guide

modification of a structure; Done (2) and Sobey (3) used the Vincent
Circle approach; Hanson (4) did a comparative study of the above two

approaches; Done and Rangacharyulu (5) and Miura and Chargin (6) used a

formal optimization approach for airframe design.

As a part of an ongoing NASA/industry rotorcraft structural

dynamics program, a study was recently initiated at Langley on
optimization of rotorcraft structures for vibration reduction. The

objective of this study is to develop practical computational

procedures for optimization of rotorcraft structures subject to

steady-state vibratory loads. One of the key elements in the

development of a computational procedure for airframe optimization is

design sensitivity analysis. A method for design sensitivity analysis

of airframes under steady-state response due to rotor-induced dynamic

loads is presented. Constraints on airframe dynamic response
displacements and natural frequencies are considered. The mathematical

formulation of the method and its implementation as a new solution

sequence in MSC/NASTRAN are described. The results of the application
of the method to a simple finite element 'stick' model of the AH-1G

helicopter airframe are discussed. The paper concludes with a short
discussion of the direction future in-house work in this area is to
take.
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DEFINITION OF OPTIMIZATION PROBLEM

The airframe structure of a helicopter is subjected to steady-

state rotor-induced harmonic loads acting at the top of the rotor

mast. The loads, in general, have six components and occur at

frequencies which are integer multiples of the product of the number of
blades and the rotor rotational speed. It is assumed that both the

magnitude and frequency of the rotor loads acting on the airframe are

known and that they are constant during design modifications.

The airframe structure is assumed to have nonuniform stiffness

and mass distributions which are functions of the geometry of the

structural members. The design variables are taken to be the dimensions

which characterize the cross-sectional geometry of a member. In

particular, for a beam member having a solid rectangular cross-section

the design variable would be the depth and height. Selection of

design variables in a large airframe structure containing thousands of

members is a difficult task. An experienced airframe designer can

suggest candidate members that can be permitted to undergo design

modification and the extent to which they can be modified. Studies by

Sciarra (Ref.1) and Hanson (Ref.4) have provided some guidelines in

the selection of design variables. In particular it has been shown

that the design variables that are most likely to bring about changes

in the response at specified locations in the airframe are the ones

having maximum forced response strain energy. Using this criterion an
initial selection of design variables of an airframe can be made. In

general, any design change will introduce changes in dynamic response,

natural frequencies, mode shapes, static strength, weight, and center

of gravity location of an airframe and they in turn indirectly change

the performance characteristics of a helicopter as a whole. Therefore,

constraints have to be imposed on the allowable response characteristics

to restrict design changes within certain bounds. For the work reported

in the paper, only constraints on steady-state dynamic response
displacements and natural frequencies are considered.

To complete the definition of the optimization problem_ an

objective function must be defined. This is not an easy task. Should

the airframe weight be the objective function or the dynamic response

displacement? If the former is selected as the objective function,

can the reduced dynamic response be achieved without increasing the
stiffness and hence the mass of an airframe? If the latter is the

objective function an optimizer may try to drive the response at a

point to zero which may not result in reduction of vibration at other

points on an airframe. Because this paper is limited to a study of

design sensitivity analysis, these additional considerations are not
addressed here.
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DESIGN SENSITIVITY ANALYSIS OF AIRFRAME

In this section formulation of design sensitivity analysis of an

airframe with constraints on steady-state dynamic response displace-

ments is presented and equations for determining the sensitivity

coefficients are given. Also, pertinent equations used in the study,

such as equations for airframe response analysis and expressions for
strain energy, are presented.

The equation of motion (state equation) for determining the

steady-state dynamic response is given in the Figure (1). The equation
is written in matrix form in terms of the coefficient matrices K

(stiffness), M (mass), C (damping), and F (force). The magnitude and

frequency of the force F are assumed to be known. Steady-state

response X occurs at the same frequency as the forcing frequency. The

unknown response vector X is obtained by solving a set of simultaneous

linearalgebraic equations. The equation of motion for the undamped

naturalfrequencies of an airframe is given. Expressions for modal

element strain energy and undamped forced response strain energy are
also given in the figure.

To determine the sensitivity coefficients for constraints on

the steady-state response X, the design variable b is changed by a

small amount db. The structural members associated with the design
variables will have new cross-sectional properties and new stiffness,

mass and damping matrices for the changed design. Thus, for a small

change in a design variable b, new K, M, and C are computed and a new

response is generated. The response x for the new design must satisfy
the equilibrium requirement h(b,x)=O. A linearized version of this

requirement is used to derive an expression for the sensitivity

coefficients @x/@b as outlined in Figure (2). The matrices on the

left-hand side (LHS) of the equation for the sensitivity coefficients

are already known from the finite element analysis for a particular

design. In the right-hand side (RHS) the change in force due to a

change in design is assumed to be zero. Only the changes in the

stiffness, mass and damping matrices due to an increment in design have
to be computed. The matrices thus formed are assembled and solved as a

set of simultaneous linear algebraic equation for the unknowns @x/@b.

An incremental form of the equations for sensitivity coefficients is
also given in the figure. The size of the matrix on the RHS is

dependent on the number of design variables and number of forcing

frequencies used in the analysis. The sensitivity coefficients @x/Bb

are obtained in a matrix form with rows corresponding to the number of

airframe degrees of freedom and columns corresponding to the number of

airframe design variables. The number of matrices of @x/Bb depends on
the number of load cases considered.
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IMPLEMENTATION OF SENSITIVITY ANALYSIS IN MSC/NASTRAN

NASTRAN is used in the helicopter industry for finite element

analysis applications, and therefore it was judged appropriate to

implement the sensitivity analysis in that program. A new solution

sequence to compute the sensitivity coefficients using NASTRAN Direct
Matrix Abstraction Program (DMAP) modules was developed. The

incremental form of the equation for the sensitivity coefficients for

constraints on steady-state dynamic response displacements was

implemented using the DMAP modules and incorporated into MSC/NASTRAN.
The solution for the sensitivity coefficients is obtained in the

sequence shown in Figure (3). The corresponding DMAP modules are also
shown there. The DMAP program uses the data about design variables and

constraints specified on NASTRAN bulk data cards (DVAR, DVSET, and
DSCONS). The data for the stiffness and mass matrices of the airframe

generated in a previous finite element analysis are retrieved from

the data base using module DBFETCH. Damping was not considered in the

current implementation. The program generates new cross-sectional

properties of structural members for an increment in design and
rearranges the intermediate data using module DSTA. Using modules EMG

and DSVG1, AK and AM are computed. The RHS of the equations for

sensitivity coefficients is assembled using module ADD. The equations

are then solved using the FRRD1 module to obtain the sensitivity

coefficients for the dynamic response constraints. Several other DMAP

modules, such as SSG2, MODACC, SDR1, SDR2, DSMA, DBSTORE and LMATPRT,
are used for pre-and post-processing of data used in the solution

sequence and also for organizing the stiffness, mass and sensitivity
coefficient matrices in a partitioned form.

Numerical results for sensitivity coefficients for constraints

on steady-state dynamic response are obtained as follows. First, the

airframe dynamic response is obtained from Rigid Format 68. Then,

the solution sequence described above is executed.
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APPLICATION TO AH-1G HELICOPTER AIRFRAME

Description of the AH-IG Airframe:

The airframe structure of the AH-IG helicopter descibed in

references 4 and 7 was used for the sensitivity analysis application.

The airframe structure with its skin panels removed is shown in Figure

(4). The fuselage portion of the airframe is built around two main

beams which provide the primary vertical bending stiffness in the

fuselage structure. The main beams are tied together by the lower

horizontal floors, the forward fuel cell cover, and the engine deck to

give the fuselage lateral stiffness. The main rotor pylon provides the

structural connection between the main rotor and the fuselage. It is

attached to the fuselage through five elastomeric mounts and a lift

link. The lift link is the primary vertical load path and is pinned to

the center wing carry-through beam. The engine, gun turret and the

landing gear are attached to the fuselage. The wings (not shown) are

designed mainly for carrying external loads and are attached to the

fuselage on either side. The tailboom is bolted to the fuselage with

four attachment fittings. The tailboom is of semimonocoque

construction having aluminium skins, stringers and longerons. The

vertical fin is connected to the tailboom through the tail rotor mast.

Elastic Line Model of the AH-IG Airframe:

A built-up finite element model of the AH-1G airframe structure

is available (Ref. 7). However, for the initial studies on sensitivity

analysis which are the subject of this paper, an elastic line or
'stick' model of the AH-1G airframe (Ref. 4) was used. The model is

shown in Figure (5). The dynamic characteristics of this elastic line

model are similar to those of the built-up model of the airframe. The

fuselage, tailboom, wings and rotor mast structure of the airframe were

modelled with beam elements. Scalar spring elements were used in the

pylon support structure. The engine and the gun turret mounts were

modelled as rigid bar elements. The NASTRAN finite element model of

this airframe consists of 42 beam elements, 13 scalar spring elements

and 12 rigid elements. There are 56 grid points in the model for a

total of 336 degrees of freedom. After applying multi-point and

single-point constraints and omitting massless degrees of freedom, the

model reduces to one having 130 dynamic degrees of freedom. The

airframe mass, both concentrated and distributed, is lumped at the grid

points selected as the dynamic degrees of freedom. Structural damping
of the airframe was not considered.

The primary vertical vibratory force coming from the rotor acts

at grid point 55. The force has a magnitude of 1000 Ib and a frequency
of 10.8 Hz ('2/rev').
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NUMERICAL RESULTS AND DISCUSSIONS

Numerical results from the application of sensitivity analysis
to a stick finite element model of the AH-1G helicopter airframe are

presented and discussed here.

Finite Element Analysis Results:

A finite element analysis of the elastic line model was made

using MSC/NASTRAN. The first few lowest natural frequencies obtained
for the model are - 3.02 Hz (pylon pitch), 4.22 Hz (pylon roll), 6.80

Hz (1st airframe lateral bending), 7.85 Hz (1st airframe vertical

bending), 16.70 Hz (2nd airframe lateral bending) and 17.10 Hz (2nd
airframe vertical bending). The mode shapes corresponding to the

vertical bending modes are shown in Figures (6 and 7). The first mode

(frequency 7.85 Hz) has two nodes (zero displacement) on the airframe

- one near the pilot seat and another near the middle of the tailboom.

The second vertical bending mode (frequency 17.1 Hz) has three nodes -

near grid points 6, 14 , and 28.

The steady-state response of the airframe due to vertical

excitation at a frequency of 10.8 Hz is shown in Figure (8). The

response shape has two nodes (points of zero displacement) - one near

grid point 2 and another near grid point 22. All other points on the
airframe vibrate at various levels of acceleration depending on the

amount of displacement of the airframe from the undeformed position.

The element strain energies associated with the forced response

were also calculated. The distribution of strain energy in the

fuselage and tailboom elements is shown in Figures (9-10) and discussed
in a later section.

Sensitivity Analysis Results:

Using the strain energy criterion, the structural members which

are most likely to influence the natural frequencies and the response
were identified. Elements in the rear part of the fuselage and most of

the elements in the tailboom were identified as likely candidates. The

cross-sectional properties of the elements identified were related to

design variables. In particular, design variable 'b' of the beam
element was related to the area and moment of inertia of the cross-

section (which are linear and cubic functions of b). A small increment

was given to b to compute a new value of the design variable.

Constraints on the steady-state dynamic response displacements

were imposed at the gun turret and pilot seat grid point locations

(4 and 8, respectively). Because only vertical responses were of

interest, only the vertical displacements were constrained. Although
constraints on lateral and torsional displacements would ultimately

also be required in a realistic design analysis, they were not

considered in this study. However, they can be easily included.
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The sensitivity coefficients for the selected constraints were

obtained from the MSC/NASTRAN DMAP program which was discussed

earlier. The sensitivity coefficients are plotted in a bar chart

format in Figures (11-14). The numerical value of a coefficient

indicates the amount of change in constraint value due to a small

(positive} change in the design variable (identified by the element

number, which also denotes the design variable number). A

positive/negative value of a sensitivity coefficient means that an

increase in the design variable results in an increase/decrease in the
constraint value. To physically interpret the results it is useful to

refer to the sensitivity of displacements (Bx/@b) rather than the

sensitivity of constraints (@h/@b). These sensitivities differ only by
a constant.

The results shown in Figures 11-12 indicate that the

sensitivity coefficients related to the tailboom elements have

magnitudes which are large compared to the fuselage elements. Consider

the sign of these coefficients. In the tailboom region the

coefficients are negative, whereas they are positive in the fuselage

region. This means that an increment in a design variable associated
with the members in the tailboom decreases the displacement at the

pilot seat (and vice-versa) whereas an increment in a design variable

in a fuselage member increases the displacement at the pilot seat (and
vice-versa). This shows that the tailboom must he stiffened and/or the

fuselage must be softened to reduce the dynamic response displacement

at the pilot seat. The sensitivity coefficients obtained for

constraints at the gun turret location are shown in Figures 13 and 14.

The tailboom elements have coefficients which are an order of magnitude

higher than those for the fuselage elements. This indicates that the

tailboom elements should be significantly stiffened. The coefficients

are negative for the fuselage and all elements in the tailboom (except

for element number 1213 which has a positive coefficient). This

suggests that the elements of the tailboom and the fuselage (except

1213} require stiffening to reduce the dynamic response at the gun

turret location. However, element 1213 requires a reduction in

stiffness. Hence, to satisfy the vibration constraint at the gun

turret location a stiffening of the airframe structure is required,
with an element with reduced stiffness at the junction of the fuselage

and the rotor mast (grid 12) of the airframe. In summary, the tailboom

requires a significant increase in stiffness to reduce the dynamic

response at both the pilot seat and gun turret locations. Thus, rather

straightforward considerations have provided the information about the

portion of the airframe to be modified, order of magnitude of

modification required, and the direction in which the modification

(stiffen or soften) is required.
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As the forced response of the airframe is a function of the

natural frequencies and mode shapes of the structure as well as the

excitation forces, any modification to the design variables to control

the response will also bring about changes in the natural frequencies.

also required. Constraints on the two lowest vertical bending modes
(natural frequencies 7.85 and 17.1 Hz) of the airframe were considered

here. Upper and lower limits on the first mode were specified at

7.0 and 8.5 Hz, respectively, and at 12.0 and 18.0 Hz, respectively,
for the second mode. MSC/NASTRAN Rigid Formats 63 and 53 were used to

obtain the sensitivity coefficients for the natural frequency

constraints. The results are discussed in the following paragraph.

The sensitivity coefficients for the constraints imposed on the
natural frequencies are plotted in Figures 15 and 16. The coefficients

obtained all have positive values. The figures indicate that the

coefficients related to the tailboom elements are large compared to
the coefficients for most of the fuselage elements in the case of the

first vertical bending mode. This shows that tailboom design strongly

influences the natural frequency of the first vertical bending mode.

In the case of the second vertical bending mode, some (aft) fuselage
elements and (rear) tailboom elements have sensitivity coefficients

larger than other elements of the airframe, and therefore they have a
strong influence on the frequency of that mode. In both cases the

coefficients are positive indicating that stiffening the elements

increases the natural frequency, as might be expected.

Interpretation of Results:

The calculation of sensitivity coefficients for a set of

condtraints often constitutes a major computational effort in an

optimization study. The sensitivity analysis results together with the

dynamic characteristics of the airframe must be interpreted carefully

to guide iterations to a low vibration design. Proper interpretation
of the results will provide insight into the nature of the

modifications required for the airframe and the feasibility of such

modifications. The results presented above are interpreted and
discussed below.

The steady-state response of the airframe is mainly due to
excitation of the two lowest vertical bending modes (7.850 and 17.1

Hz) by the vertical force (10.8 Hz). The response shape resembles the

first vertical bending mode, with the tailboom responding significantly

more than the fuselage. The large motion of the tailboom may be

attributed to the fact the tailboom is relatively soft compared to the

fuselage. Therefore, to shift the natural frequencies and thereby

change the response, the stiffness of the tailboom should be suitably

changed. The sensitivity results also suggest that changes should be

made to the tailboom design, that is, to increase the tailboom

stiffness. Thus, the results on dynamic characteristics and

sensitivity analysis are complementary.
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Consideration of strain energy results together with

sensitivity results can also be meaningful. In particular, compare the
distribution of element strain energy densities in the forced response

mode shape with the distribution of sensitivity coefficients in the
airframe. The element strain energy densities in the tailboom are

higher than those in the fuselage elements. This comparison indicates
that elements with higher strain energies have higher magnitudes of

sensitivity coefficients. Therefore, it would be beneficial to use

both strain energy information and sensitivity results in the

optimization procedure. There could be two possibilites here - one is
to use the strain energy results to select design variables; another is

to use the strain energy result to modify the design instead of using a

more costly design sensitivity analysis. The later possibility is yet

to be investigated. In this regard an explicit relation between the

strain energy of elements and sensitivity coefficients would be
useful.

The overall dynamics of the airframe has some bearing on the

optimization of an airframe for vibration reduction. In a conservative

dynamic system, the work done by external forces on a flexible
structure is transformed into strain energy and kinetic energy. In a

nonuniform structure, the distribution of these energies depends on the
stiffness and mass distributions. Often a portion of a structure (for

example, the tailboom of the AH-1G helicopter) may vibrate

significantly more than other portions. In a sense the portion of the
structure which vibrates most acts like a vibration absorber.

Therefore, if one tries to reduce vibration in a certain portion of the

airframe, some other portion of the airframe will vibrate excessively.

From the above discussion, the following possibilities offer

themselves for reducing vibrations in the fuselage:

1. Soften the tailboom so that it acts like a vibration

absorber.
2. Stiffen the tailboom and soften the fuselage to reduce

vibration at the pilot seat.
3. Stiffen the tailboom and the fuselage and provide a soft

spring-like interface structure between them to reduce

vibration at the gun turret.

Clearly, these possibilities are not realistic in practice.

However, they do suggest the types of modifications required for the

airframe to satisfy the design constraints. The magnitudes of the

modifications required can be obtained by interfacing the sensitivity

analysis program with an optimizer. Careful selection of limits on

design variables and constraints is needed, otherwise an optimizer may

drive the design to an unrealistic configuration. Also, other types of

constraints that must be imposed in a realistic airframe design should

be included in the study. Therefore, the airframe optimization problem

must be viewed in a broader perspective by considering the total

helicopter system and not just a part of it.
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CONCLUSIONS

An initial study on design sensitivity analysis of rotorcraft
airframe structures for vibration reduction has been made. A

mathematical formulation for sensitivity analysis for constraints on

steady-state forced response displacements was presented. The
equations for the sensitivity coefficients were implemented as a new

solution sequence in MSC/NASTRAN. Calculation of sensitivity

coefficients was made using an elastic line model of the AH-1G

helicopter airframe. The results of this preliminary study indicated

the following:

1. Sensitivity coefficient results indicate that tailboom

elements significantly influence the vibration response at

the pilot seat and gun turret locations.

2. Sesitive elements of the airframe have higher element strain

energies.

3. The first two vertical bending modes of the AH-1G airframe
have a significant influence on the vertical response of the

airframe under '2/rev' vertical rotor excitation loads.

4. Interpretation of the airframe dynamic characteristics

together with the sensitivity analysis results has brought

out the essential nature of modifications required in the
AH-IGairframe to reduce vibration.

DIRECTIONS FOR FUTURE WORK

The initial study on airframe sensitivity analysis indicates

that there are several important aspects that must be considered.

Based on the study, the following areas are identified for further

investigation:

1. Consider constraints on static strength, forced response

and natural frequencies simultaneously.

2. Interface an optimizer with the design sensitivity analysis

3. Study built-up finite element models.

4. Include airframe structural damping.

5. Include the effect of change of excitation force due to

change in airframe flexibility.

6. Address problem of disjoint design space in forced

response constraint formulation.

7. Consider a broader range of constraints (center-of-gravity

movement of airframe, crash-loads, etc.,) for more effective

use of optimization in actual helicopter design.
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PERTINENT EQUATIONS

EQUATIONS FOR STEADY-STATE RESPONSE

MX + CX + KX -- F
i_+. i=,E

Where F = f e X = x e

EQUATIONS FOR NATURAL MODES
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Figure I.

EQUATIONS FOR SENSITIVITY COEFFICIENTS

CONSTRAINTS _ ON STEADY-STATE DYNAMIC DISPLACEMENTS:
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IxJ
STATE EQUATION FOR DYNAMIC DISPLACEMENTS:
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Linear approximation to change in h due to chonge in b:
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EQUATIONS FOR SENSITIVITY COEFFICIENTS:
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Figure 2.
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SENSITIVITY ANALYSIS FOR DYNAMIC RESPONSE USING

MSC/NASTRAN DMAP SOLUTION SEQUENCE

SOLUTION SEQUENCE NASTRAN MODULES

I READ CONSTRAINTS AND lDESICN VARIABLE DATA

I

ICET M,K,x,f,(a,C IFROM DATABASE

I

ICOMPUTE SECTION PRO- IPERIY FOR NEW DESlCN
I

ICOMPUTE K, M, f,c IFOR CHANGE IN DESIGN

I
_ COMPUTE

f -(-_Z_M+IG)AC+ AK)I
I

I SOLVE FOR SENSITIVITY,COEFFICIENTS _ I

DBFETCH,PARAM

TABPT.MATPRT

DSTA,DBSTORE

EMC,DSVC1

ADD,PARAML,
PARAMR

SSC2,FRRD1,MODACC

SDR1,SDR2,DSVG3,DSMA

DBSTORE,LMATPRT

Figure 3.

AIRFRAME STRUCTURE OF THE AH-1G HELICOPTER

Actual helicopter
airframe structure
(skins removed)

Main rotor pylon
transmission case_=link-

Elastomeric
mount (4)

Center wing
carry through beam
(lift beam)

Figure 4.
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ELASTIC LINE (STICK) MODEL OF THE AH-1G AIRFRAME

56 grid points
55 structural elements
70 analysisdegreesof freedom

40

Figure 5.

FZI_T VERTICAL BENDING HODE OF" AZRF'RAHE (F'REQ.-7.8E HZ)

/
/

/

Figure 6.
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SECOND VERTICAL BENDING MODE OF" AZRF'RAHE (F'REO.-17. I HZ)

Figure 7.

Figure 8.
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ELEMENT STRAIN ENERGY DENSITIES
IN FUSELAGE FOR FORCED RESPONSE
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Figure 9.

ELEMENT STRAIN ENERGY DENSITIES
IN TAILBOOM FOR FORCED RESPONSE
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